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Problem 
Definition
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Privacy Concerns are Major Barriers to 
Access Health Data

• Privacy is considered the most prominent issue 
in big data research.

• A. Ferretti et al. “The Challenges of Big Data for Research Ethics 
Committees: A Qualitative Swiss Study,” J Empir Res Hum Res 
Ethics, vol. 17, no. 1–2, pp. 129–143, Feb. 2022, doi: 
10.1177/15562646211053538

• Privacy concerns act as a barrier to sharing of 
health data.

• K. B. Read et al. “Data-sharing practices in publications funded by 
the Canadian Institutes of Health Research: a descriptive analysis,” 
Canadian Medical Association Open Access Journal, vol. 9, no. 4, 
pp. E980–E987, Oct. 2021, doi: 10.9778/cmajo.20200303

• R. Trestian et al., “Privacy in a Time of COVID-19: How Concerned 
Are You?,” IEEE Secur. Privacy, vol. 19, no. 5, pp. 26–35, Sep. 2021, 
doi: 10.1109/MSEC.2021.3092607

• Privacy concerns act as a barrier to seeking 
health care.

• Pool J, Akhlaghpour S, Fatehi F, Gray LC. Data privacy concerns 
and use of telehealth in the aged care context: An integrative 
review and research agenda. Int J Med Inform. 2022;160:104707. 
doi:10.1016/j.ijmedinf.2022.104707
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Exploring Privacy Concerns in Theory

1. Linking 
• Voter registration list for Cambridge Massachusetts $20 
• Group Insurance Commission (GIC) in Massachusetts $0

2. Uniqueness
• William Weld (former governor of Massachusetts)

87% of Americans are probably unique by the combination of 5-digit zip code, sex 
and birth date.
L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 
2002; 557-570

Most re-identification attacks are on improperly anonymized data. 
K. El Emam et al. A systematic review of re-identification attacks on health data [published correction appears in PLoS One. 
2015;10(4):e0126772]. PLoS One. 2011;6(12):e28071. doi:10.1371/journal.pone.0028071
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Mitigating Privacy Concerns

• Controlled (remote/on-site) access

• Remote execution

• Remote queries

• Secure Computation

• Anonymization

• Synthetic Data Generation
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Missing Adoption of Anonymization 

Uncertainty

Reports on Re-identification

Improper Anonymization

Loss of Trust

Missing Adoption

Certainty

Proper Anonymization

Higher Costs

* technical but also regulatory uncertainty

*



8 Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute

Reducing Uncertainty in the 
Anonymization of Health Care Data
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Research Questions

1. Can we reproduce scientific results in health research with 
anonymized data? 

2. How relevant is use case-specific anonymization for reproducibility?

3. Do broad utility metrics reflect reproducibility?
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Case Study Using Clinical Data
Original Data

1a. Generic 1b. Use Case-Specific
1. Anonymization

2. Evaluation

2a. Privacy

2b. Broad Utility

2c. Reproducibility
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Anonymization
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Equivalence Classes are Defined by 
Quasi-Identifiers

Obstructive nephropathyPulse (bpm)BMIGenderAge (years)

Yes8723.5Female63

Yes6530.0Female67

Yes10035.5Male55

No9627.8Female72

Quasi-Identifiers (QI)
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Re-identification Probability is Based on 
Equivalence Classes

GenderBirth year

Female1950-1960

Male1960-1970

Female1960-1970

Male1950-1960

Risk: 1/1

Maximum Risk: 1/1 = 1.00Risk: 1/1

Risk: 1/1

Risk: 1/1

Average Risk: 1/4 * (1/1 + 1/1 + 1/1 + 1/1) = 1.00 
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Re-identification Probability is Based on 
Equivalence Classes

Risk: 1/1

Maximum Risk: 1/1 = 1.00Risk: 1/2

Risk: 1/2

Risk: 1/1

Average Risk: 1/4 * (1/1 + 1/2 + 1/2 + 1/1) = 0.75

GenderBirth year

Female1950-1960

Female1960-1970

Female1960-1970

Male1950-1960
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Re-identification Probability is Based on 
Equivalence Classes

Risk: 1/2

Maximum Risk: 1/2 = 0.5Risk: 1/2

Risk: 1/2

Risk: 1/2

Average Risk: 1/4 * (1/2 + 1/2 + 1/2 + 1/2) = 0.5

GenderBirth year

Female1950-1960

Female1960-1970

Female1960-1970

Female1950-1960
strict-average risk* 

k-anonymity

* combined with maximum risk (k-anonymity)
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Threat Modeling

Threshold(s)

§

Quasi-Identifiers

Privacy Model
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Translating Concepts Into Tools

Tool: Reference: Prasser F, Kohlmayer F, Lautenschläger R, Kuhn KA. ARX--A Comprehensive Tool for Anonymizing Biomedical Data. AMIA 
Annu Symp Proc. 2014;2014:984-993. Published 2014 Nov 14. https://arx.deidentifier.org/
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Searching for the Optimal Solution

Tool: Reference: Prasser F, Kohlmayer F, Lautenschläger R, Kuhn KA. ARX--A Comprehensive Tool for Anonymizing Biomedical Data. AMIA Annu Symp Proc. 
2014;2014:984-993. Published 2014 Nov 14. https://arx.deidentifier.org/

Privacy

Utility
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Configuring the Case Study Using 
Clinical Data

• Original Data: German Chronic Kidney Disease (GCKD), n = 5,217

• Anonymization: generic scenario, use case-specific scenario

• Privacy models: k-anonymity, strict-average risk

• Thresholds: k between 1 and 50

• Quasi-Identifiers: age, gender, height, weight, BMI, history of renal 
biopsy

• Transformation models: generalization, suppression (MaxSup: 10%)

• Reproducibility: disease burden and risk profile of patients with CKD
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Case Study Using Clinical Data: 100 
Study Points Per Scenario 

GCKD

1a. Generic 1b. Use Case-Specific
1. Anonymization

2. Evaluation

2a. Privacy

2b. Broad Utility

2c. Reproducibility
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Utility 
Evaluation
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Measuring Utility

• Broad Utility
• Granularity: coverage of the original value space

• Entropy: differences in the distribution

• Reproducibility
• Estimate agreement

• 95% CI overlap

From: Karr AF, et al. A Framework for Evaluating the Utility of Data Altered to Protect Confidentiality. The American Statistician 2006, 60:3:224-232. 
doi: 10.1198/000313006X124640 
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Utility loss was more pronounced for 
entropy than for granularity.

Privacy-utility curves based on general-purpose utility metrics.
From: Pilgram et al. The Costs of Anonymization: Case Study Using Clinical Data. J Med Internet Res (forthcoming). doi:10.2196/49445
http://dx.doi.org/10.2196/49445
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Most estimates in anonymized data had 
a 95% CI overlap of over 50%.

Proportion, CIs, and overlap in the interval lengths for descriptive analyses.
From: Pilgram et al. The Costs of Anonymization: Case Study Using Clinical Data. J Med Internet Res (forthcoming). doi:10.2196/49445
http://dx.doi.org/10.2196/49445

eGFR: estimated glomerular filtration 
rate

ACE: angiotensin-converting enzyme

BP: blood pressure

UACR: urine albumin-to-creatinine 
ratio
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There are differences between the 
applied utility metrics and scenarios.

Generic and use case–specific utility metrics.
From: Pilgram et al. The Costs of Anonymization: Case Study Using Clinical Data. J Med Internet Res (forthcoming). doi:10.2196/49445
http://dx.doi.org/10.2196/49445
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Conclusions
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Case Study Using Clinical Data: 
Summary

GCKD

1a. Generic 1b. Use Case-Specific
1. Anonymization

2. Evaluation

2a. Privacy

2b. Broad Utility

2c. Reproducibility
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Research Questions: Key Findings

1. Can we reproduce scientific results in health research with anonymized 
data? 

Yes. Anonymization of data does not necessarily impair utility for 
downstream analyses. 

2. How relevant is use case-specific anonymization for reproducibility?
Use case-specific anonymization results in better utility for downstream 
analyses than generic one. 

3. Do broad utility metrics reflect reproducibility?
Not necessarily. Broad utility metrics treat all variables equally. 
Reproducibility might be worse or better than anticipated. 
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Conclusions

 Specification of utility requirements should be an integral part of the 
anonymization process.

 Anonymized data for multiple likely uses should indicate limitations 
when implications are drawn from their analyses. 
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Read more in

L. Pilgram, T. Meurers, B. Malin, GCKD Investigators, E. Schaeffner, K.-U. 
Eckardt, F. Prasser. The Costs of Anonymization: Case Study Using 
Clinical Data. J Med Internet Res (forthcoming). doi:10.2196/49445
http://dx.doi.org/10.2196/49445

Special thanks to …

… the coauthors

… the GCKD investigators and study participants

… the BIH Charité Junior Digital Clinician Scientist Program funded by the Charité
– Universitätsmedizin Berlin, and the Berlin Institute of Health at Charité (BIH)
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Questions?


