
Using the sdgm Package

Khaled El Emam, Dan Liu, and Juan Li

2024-01-12

This document describes the basic operations of the sdgm package. This package is intended to provide some
basic modeling functions that can be used in other projects and within other packages. The main purposes
for developing this package were:

• Teaching an introductory course in machine learning

• Use it as part of machine learning research projects so that we would have a documented and stable
set of modeling functions

• Perform experiments to evaluate different techniques to improve the performance of different types of
models

Note that the models in this package can take a considerable amount of computation to complete. Therefore,
do not be surprised if you need to wait if your computational capacity is limited. It is recommended to run
this package on a machine that has many CPU cores to enable the parallelization of the computation. Also,
this package is implemented to work on CPUs by default. It will not work on GPUs at this point in time.

Main Installation Steps

The package has a dependency on keras and hence tensorflow. These packages are needed if the embedding
layer is trained for dealing with high cardinality variables (it is one of the categorical variable encoding options
in the package).

It is not necessary to have a GPU available as the computations are all CPU-bound. However, these packages
need to be installed first even if you do not need that functionality for your projects. This will install Python
on the machine. The assumption is that the reticulate package is installed. If it is not the it will need to
be installed first.

The installation of these packages can be accomplished as follows:

install reticulate if necessary
install.packages("reticulate")

start here
reticulate::install_python()
install.packages("tensorflow")
library(tensorflow)
install_tensorflow(envname = "r-tensorflow")

RESTART

1

install.packages("keras")
library(keras)
install_keras()

RESTART

TO TEST IT
library(magrittr)
model <- keras_model_sequential()
model %>%

layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')

this should display a summary of the model specified above
summary(model)

After that you can install the sdgm package. The following process should make it somewhat easier to install
the package for the first time and also to update it over time. The installation is directly from Cloudsmith.
The easiest way is to include the Cloudsmith repositories that are used by EHIL in your R Studio profile,
and then you can just do a regular install afterwards (assuming you use R Studio).

Run the following to save the profile information:

r = getOption("repos")
r["ehil"] = "https://dl.cloudsmith.io/oZuDP9AMif3uYKF7/ehil/sdg/cran/"
options(repos = r)
rm(r)

Then either through the R Studio menu or the following code you can install this package:

install.packages("sdgm")

If you do not want to save this Cloudsmith repository in your profile or you are not using R Studio, then
you can install directly as follows and this will also install all of the dependencies (which is probably the
easiest way to install the package and is my preference):

install.packages(
"sdgm",
repos = c(

cloudsmith = "https://dl.cloudsmith.io/oZuDP9AMif3uYKF7/ehil/sdg/cran/",
cran = "http://cran.us.r-project.org"
),

dependencies=T
)

While these links are open, they are only accessible through this unique URL.

2

Basic Principles of the Package

The sdgm package was designed to make correct machine learning (ML) modeling easier. There are other
packages that do this but we have found them not to be thoroughly documented with many methodology
and practical details not clear, leaving the user having to experiment a lot or to read the package code to
understand what is happening, neither of which is ideal. Also, for users that just want to train models, the
flexibility of some of the other packages makes it easier to make subtle mistakes, which we hope we have
avoided here.

The package is intended to be used in other larger ML projects and simulations. Our lab’s focus is synthetic
data generation (hence the name sdg), however, the modeling tools can be used in other modeling applications
as well.

This section provides some of the basic principles for the sdgm package.

Debug Output

If you want to get debug messages (which can sometimes be useful), set the following at the top of your
notebooks:

sdgm.verbose<<-TRUE

This is different than the verbose parameter which is used in function calls.

Binary Classification

The following binary classification functions are currently supported:

The binary classification functions are:

Modeling Methods Notes
Logistic Regression Logistic regression with no feature selection
CART Standard Classification trees using the rpart

package
Random Forest Random forests using the ranger package
SVM Support Vector Machines
LGBM Light gradient boosted decision trees
xgboost Extreme gradient boosted trees

More methods are being added so this is not a static list.

Type of Outcome

For the binary classification models the outcome is expected to be a binary variable of some sort. If it is not
a binary variable then an error will be generated. If you can make the binary variable 0/1 then everything
is clear. If the outcome variable is a factor or a character, that is OK and the functions should handle that.
But it should have two values only for binary classification.

For factors or character, the question is what is the positive class that the predicted probability pertains
to ? If you set the global sdgm.verbose to TRUE the function will tell you what it determines to be the
positive class, or you can look at the factor levels to see which is the second factor (and taht is the positive
class). But that is something important to keep in mind.

3

Modeling Process

The default modeling process uses stratified 5-fold cross-validation to tune the hyperparameters for the
modeling method of interest. Once the optimal hyperparameters are determined then a model is trained on
the full dataset. That is the final model that is delivered at the end of the model training.

The hyperparameter tuning is performed by default to maximize the AUC. This can be changed by the
function parameters to logloss or brier.

Also, by default the model training will try to apply target encoding on high cardinality variables. For
logistic regression this is attempted when a variable has more than ten categories (this is defined in the
constant sdgm::sdgm.s.encode.threshold). For the other model types this is attempted when a variable
has more than 100 categories (this is defined in the constant sdgm::sdgm.l.encode.threshold).

Even though encoding is attempted, that does not mean that it will be implemented as this becomes another
hyperparameter that is included in tuning (whether to encode or not). Therefore, if the encoding does not
improve the AUC (by default) then it will not be kept.

Encoding will only be implemented if the tuning is turned on. This is a general feature of the package in
that some types of functionality are only considered in tuning (such as encoding and rebalancing).

The user can switch the encoding scheme to embedding where multidimensional embedding layer will be
trained and used. The number of dimensions follows the Jeremy Howard / fast.ai rule of thumb which is
the minimum of 50 dimensions or the number of categories divided by two (rounded).

Type of Prediction

The binary classifiers predict (using the predict function) probabilities or pseudo-probabilities. They do
not attempt to convert these to actual classes. These conversions are left to the user.

Prediction Result

A generic predict function is then used to get the predicted probabilities using the trained model. A new
(test) dataset is typically used to predict on. Note that not all methods can handle missing values in the
predictors in the test dataset. For methods that cannot handle missing values in the predictors during
prediction, the predicted value will be NA. Therefore, keep in mind that sometimes you may get an NA value
instead of a predicted probability, but the prediction result (the vector of probabilities) will always be the
same length as the test dataset number of rows.

Hyperparameter Tuning

The tuning algorithm used is Bayesian optimization. This cannot be changed. If the BO algorithm fails for
some reason (e.g., lack of variation), the hyperparameters used will be the default ones. Whatever they are,
the model hyperparameters are in the resultant model object and can be inspected. The values chosen were
informed by the following analyses and recommendations:

1. E. Bartz, T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann, Eds., Hyperparameter Tuning for
Machine and Deep Learning with R: A Practical Guide. Singapore: Springer Nature, 2023. doi:
10.1007/978-981-19-5170-1.

2. B. Bischl et al., “Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open
Challenges,” arXiv.org. Accessed: Dec. 09, 2023. [Online]. Available: https://arxiv.org/abs/2107.
05847v3

4

https://arxiv.org/abs/2107.05847v3
https://arxiv.org/abs/2107.05847v3

3. M. Binder, F. Pfisterer, and B. Bischl, “Collecting Empirical Data About Hyperparameters for Data
Driven AutoML,” 7th ICML Workshop Autom. Mach. Learn., 2020.

4. D. Kühn, P. Probst, J. Thomas, and B. Bischl, “Automatic Exploration of Machine Learning Experi-
ments on OpenML,” arXiv.org. Accessed: Dec. 09, 2023. [Online]. Available: https://arxiv.org/abs/
1806.10961v3

CART

Hyperparameter Default Lower Bound Upper Bound Transform
min.split 4 1 7 value is

round(2ˆmin.split)
min.bucket 3 0 6 value is

round(2ˆmin.bucket)
max.depth 30 1 30
cp -2 -4 -1 value is

10ˆcp

SVM

Hyperparameter Default Lower Bound Upper Bound Transform
kernel 1 1 (radial) 2 (sigmoid)
gamma 1/nFeatures -10 10 2ˆgamma
cost 1 -10 10 2ˆcost

Random Forest

Hyperparameter Default Lower Bound Upper Bound Transform
num.trees 500 1 2000
min.node.size 0.5 0 1 round(nˆmin.node.size)

where n
is the
number
of obser-
vations

max.depth 15 1 50
min.bucket 10 1 60

Other hyperparameters were not tuned because they were not improving the performance on the models
that we tested on.

LGBM

Hyperparameter Default Lower Bound Upper Bound Transform
booster 1 (gbdt) 1 (gbdt) 2 (goss)
max_depth 6 1 15
learning_rate log2(0.3) -10 0 2ˆlearning_rate
early_stopping_rounds 7 7 30

5

https://arxiv.org/abs/1806.10961v3
https://arxiv.org/abs/1806.10961v3

Hyperparameter Default Lower Bound Upper Bound Transform
min_data_in_leaf 10 1 60
num_leaves 15 4 60

xgboost

Hyperparameter Default Lower Bound Upper Bound Transform
gamma 0 -15 3 2ˆgamma
eta log2(0.3) -10 0 2ˆeta
max_depth 6 1 15
early_stopping_rounds 7 7 30
max_leaves 15 4 60
min_child_weight 1 0 7 2ˆmin_child_weight

Example

The following example shows a basic train/validate/test for the CART model on the Adult census
dataset (a random sample from that just for performance reasons). The train/validate is within the
cart.bestmodel.bin function which performs a 5-fold cross-validation to find the best hyperparame-
ters and returns the best hyperparameters and the model trained on the full dataset using these best
hyperparameters. This type of function is the basic building block of the package.

this displays debug statements and outputs which is sometimes useful
you can switch it off if you do not want the debug output
sdgm.verbose<<-T

full_data<-sdgm::C1

create train and test data
idx<-splitTools::partition(rep(0,nrow(full_data)), p=c(train=0.7, test=0.3), type="stratified")
train_data <- full_data[idx$train,] %>% dplyr::slice_sample(prop=0.1) # take sample to speed it up
test_data <- full_data[idx$test,]
voutcome<-"income"

train a CART model with optimal hyperparameters
best_model<-sdgm::cart.bestmodel.bin(train_data, voutcome)

predict on the test data
preds<-predict(best_model, test_data)

auc
if (!is.null(preds))
{

we use our own AUC function as it fixes some bugs in the MLmetrics package version
test_auc<-sdgm::auc(preds, test_data[,voutcome])

} else {
test_auc<-NA
print("AUC calculation failed because there are no predicted values")

}

print(paste0("AUC on Adult Data: ", test_auc))

6

Binary Classification Functions

The above template can be used for any of the binary classification functions when implementing a simple
train/validate/test evaluation with 5-fold CV. The binary classification functions are:

Modeling Methods Function
Logistic Regression sdgm::lr.bestmodel.bin
CART sdgm::cart.bestmodel.bin
Random Forest sdgm::rf.bestmodel.bin
SVM sdgm::svm.bestmodel.bin
LGBM sdgm::lgbm.bestmodel.bin
xgboost sdgm::xgb.bestmodel.bin

The function parameters are exactly the same, and the behavior is the same in that a model is trained and
tuned (where relevant), and the final model is returned that is trained on the full dataset. For model-specific
behavior, please see the help files for the model.

The output of the modeling is an object that has a consistent structure.

print(best_model)

The explanation of the attributes of the resultant model are:

Attribute Interpretation
model Model object (which will depend on the algorithm used)
params A list of the optimal hyperparameters. The actual

hyperparameters will depend on the algorithm that is
used.
There is an additional attribute there which is perf and
that is the loss (multiplied by -1 to make it a positive
number if logloss) of the optimal hyperparameters.

outcome A string of the variable name of the outcome
factorList A list of the factor predictors, with the categories used

during training (as character strings). Any categories
that are not there during prediction may be removed
(that observation converted to NA - depending on the
algorithm).

predictors A string list of all of the predictor variables prior to
encoding

hicar A string list of all high cardinality variables that may
be considered for additional encoding. If this is NULL
it means that no encoding has been performed for this
model (i.e., no encoding was more favourable or tuning
was off).

encoders This is a list of encoders that were created for the high
cardinality variables. It is for internal use.

encode_method The specific method that was used for encoding. This
method may not have actually been applied if the hicar
attribute is NULL. This attribute reflects what the user
wanted and not necessarily what was implemented.

cfit Calibration fit if it was deemed that beta calibration
improved the predicted probabilities.

7

Attribute Interpretation
logicalList A string list of field names that were logical in the

original data. This is only used for some of the models
where consistency between the logical status in fit for
predict is important (such as CART).

Nested Cross-Validation

Nested cross-validation is a general purpose function that has a 5-fold outer loop. By default it tries to
parallelize the outer loop but this can be disabled through the parameters.

this displays debug statements and outputs which is sometimes useful
you can switch it off if you do not want the debug output
sdgm.verbose<<-T

full_data<-sdgm::C1 %>% dplyr::slice_sample(prop=0.1)

create train and test data
voutcome<-"income"

train a CART model with optimal hyperparameters
best_model<-sdgm::nested.cv.bin(sdgm::cart.bestmodel.bin, full_data, voutcome)

auc
model_auc<-best_model$auc

print(paste0("AUC on Adult Data: ", model_auc))

there is a predict() function for the model trained from the nested CV
so you can use the "best_model" on unseen data as well

For model evaluation it is generally recommended to used nested CV (see recommendations below).

Calibration

Calibration is defined, most commonly, as when we observe a p% probability of an outcome among patients
with a predicted p% probability of the event [1]. For binary prediction with boosted trees, the predicted values
are not true probabilities and the error grows as the number of iterations increases [2], [3]. Therefore, these
pseudo probabilities need to be calibrated after the fact. Calibration methods, such as isotonic regression
overfit with small datasets. Another commonly used method, Platt scaling, is also not suitable because
boosting tends to produce extreme probability estimates (close to zero or one), and Platt scaling works best
when the probabilities are closer to the mid-point [4]. Furthermore, the logistic function used in Platt scaling
does not support the identity function, which can result in calibrated models having worse calibration after
scaling. We use beta calibration, which provides a better solution with a more flexible functional form [5].
When oversampling methods are used to balance datasets, that results in incorrect predicted probabilities
across different machine learning algorithms [6]. These predicted probabilities must be corrected using
calibration, and in that case we also use beta calibration. The integrated calibration index (ICI) is used to
determine whether beta calibration has improved the accuracy of the predicted probabilities [7]. This means
that in some instances the calibration does not add value and the uncalibrated model is used.
The dataset is divided into three partitions: training, calibration, and test. The ML model is trained on
the training partition using the optimal hyperparameters. A calibration model is fitted on the calibration

8

dataset using the predicted and observed values from the trained model. The ICI is computed on the test
dataset to determine if the calibration should be retained or not. If calibration is retained then the final
model is trained on the concatenation of the training and test datasets. If calibration is not retained then
the final model is trained on the full dataset. Note that the encoding partition is treated separately from
the above (i.e., if encoding is performed then that partition is not included in the calibration).

For imbalanced data, rebalancing is performed on the training set only to avoid leakage of information in
the test dataset [8]. We use a sequential decision tree generative model for rebalancing [9]. Once a synthetic
dataset is generated, rejection sampling is used to add minority group records. This type of generative
model has been used to synthesize health and social sciences data [10]–[18], and applied in research studies
on synthetic data [10], [19], [20].

The rebalancing decision is made during hyperparameter tuning and is only retained if it improves on the
chosen loss metric. This is how calibration is selected:

Method Calibration Decision
Logistic Regression if rebalancing is selected
Random Forest always calibrate
CART if rebalancing is selected
SVM always calibrate
LGBM always calibrate
xgboost always calibrate

Note that the algorithm and approach used for rebalancing are experimental and will likely evolve over time
as we make improvements.

References for Calibration Subsection

1. E. W. Steyerberg, Clinical Prediction Models: A Practical Approach to Development, Validation, and
Updating. in Statistics for Biology and Health. Cham: Springer International Publishing, 2019. doi:
10.1007/978-3-030-16399-0.

2. A. Niculescu-Mizil and R. A. Caruana, “Obtaining Calibrated Probabilities from Boost-
ing,” ArXiv12071403 Cs Stat, Jul. 2012, Accessed: Oct. 21, 2020. [Online]. Available:
http://arxiv.org/abs/1207.1403

3. B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates from decision trees and naive
Bayesian classifiers,” in ICML, 2001.

4. Y. Huang, W. Li, F. Macheret, R. A. Gabriel, and L. Ohno-Machado, “A tutorial on calibration
measurements and calibration models for clinical prediction models,” J. Am. Med. Inform. Assoc.
JAMIA, vol. 27, no. 4, pp. 621–633, Apr. 2020, doi: 10.1093/jamia/ocz228.

5. M. Kull, T. S. Filho, and P. Flach, “Beta calibration: a well-founded and easily implemented improve-
ment on logistic calibration for binary classifiers,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, PMLR, Apr. 2017, pp. 623–631. Accessed: Dec. 30, 2022.
[Online]. Available: https://proceedings.mlr.press/v54/kull17a.html

6. R. van den Goorbergh, M. van Smeden, D. Timmerman, and B. Van Calster, “The harm of class imbal-
ance corrections for risk prediction models: illustration and simulation using logistic regression,” J. Am.
Med. Inform. Assoc. JAMIA, vol. 29, no. 9, pp. 1525–1534, Aug. 2022, doi: 10.1093/jamia/ocac093.

7. P. C. Austin and E. W. Steyerberg, “The Integrated Calibration Index (ICI) and related metrics for
quantifying the calibration of logistic regression models,” Stat. Med., vol. 38, no. 21, pp. 4051–4065,
Sep. 2019, doi: 10.1002/sim.8281.

9

http://arxiv.org/abs/1207.1403
https://proceedings.mlr.press/v54/kull17a.html

8. G. Vandewiele et al., “Overly optimistic prediction results on imbalanced data: a case study of flaws
and benefits when applying over-sampling,” Artif. Intell. Med., vol. 111, p. 101987, Jan. 2021, doi:
10.1016/j.artmed.2020.101987.

9. K. El Emam, L. Mosquera, and C. Zheng, “Optimizing the synthesis of clinical trial data using sequen-
tial trees,” J. Am. Med. Inform. Assoc. JAMIA, Nov. 2020, doi: 10.1093/jamia/ocaa249.

10. J. Drechsler and J. P. Reiter, “An empirical evaluation of easily implemented, nonparametric meth-
ods for generating synthetic datasets,” Comput. Stat. Data Anal., vol. 55, no. 12, pp. 3232–3243,
Dec. 2011, doi: 10.1016/j.csda.2011.06.006.

11. R. C. Arslan, K. M. Schilling, T. M. Gerlach, and L. Penke, “Using 26,000 diary entries to show
ovulatory changes in sexual desire and behavior,” J. Pers. Soc. Psychol., vol. 121, no. 2, pp. 410–431,
2021, doi: 10.1037/pspp0000208.

12. D. Bonnéry et al., “The Promise and Limitations of Synthetic Data as a Strategy to Expand Access
to State-Level Multi-Agency Longitudinal Data,” J. Res. Educ. Eff., vol. 12, no. 4, pp. 616–647,
Oct. 2019, doi: 10.1080/19345747.2019.1631421.

13. A. Sabay, L. Harris, V. Bejugama, and K. Jaceldo-Siegl, “Overcoming Small Data Limitations in
Heart Disease Prediction by Using Surrogate Data,” SMU Data Sci. Rev., vol. 1, no. 3, p. Article 12,
Aug. 2018.

14. Michael Freiman, Amy Lauger, and Jerome Reiter, “Data Synthesis and Perturbation for the Amer-
ican Community Survey at the U.S. Census Bureau,” US Census Bureau, Working paper, 2017. Ac-
cessed: Feb. 24, 2020. [Online]. Available: https://www.census.gov/library/working-papers/2018/
adrm/formal-privacy-synthetic-data-acs.html

15. B. Nowok, “Utility of synthetic microdata generated using tree-based methods,” presented at the
UNECE Statistical Data Confidentiality Work Session, Helsinki, Oct. 2015. Accessed: Feb. 24, 2020.
[Online]. Available: https://unece.org/statistics/events/SDC2015

16. G. M. Raab, B. Nowok, and C. Dibben, “Practical Data Synthesis for Large Samples,” J. Priv. Confi-
dentiality, vol. 7, no. 3, pp. 67–97, 2016, doi: 10.29012/jpc.v7i3.407.

17. B. Nowok, G. M. Raab, and C. Dibben, “Providing bespoke synthetic data for the UK Longitudinal
Studies and other sensitive data with the synthpop package for R 1,” Stat. J. IAOS, vol. 33, no. 3,
pp. 785–796, Jan. 2017, doi: 10.3233/SJI-150153.

18. D. S. Quintana, “A synthetic dataset primer for the biobehavioural sciences to promote reproducibility
and hypothesis generation,” eLife, vol. 9, p. e53275, 2020, doi: 10.7554/eLife.53275.

19. C. Little, M. Elliot, R. Allmendinger, and S. Samani, “Generative adversarial networks for synthetic
data generation: A comparative study,” presented at the UNECE Expert Meeting on Statistical
Data Confidentiality, Poznań, Poland: United Nations Economic Commission for Europe, Dec. 2021,
p. 17. Accessed: Jan. 17, 2022. [Online]. Available: https://unece.org/statistics/documents/2021/12/
working-documents/generative-adversarial-networks-synthetic-data

20. J. Taub, M. Elliot, and W. Sakshaug, “The Impact of Synthetic Data Generation on Data Utility with
Application to the 1991 UK Samples of Anonymised Records,” Trans. Data Priv., vol. 13, no. 1,
pp. 1–23, 2020.

Saving Models

There are specific functions in the package for saving and loading the models that are trained. It is important
to use these functions as they will ensure that all auxiliary files that are needed are also saved within the
model file. Plus, these functions provide a uniform interface across all algorithms.

10

https://www.census.gov/library/working-papers/2018/adrm/formal-privacy-synthetic-data-acs.html
https://www.census.gov/library/working-papers/2018/adrm/formal-privacy-synthetic-data-acs.html
https://unece.org/statistics/events/SDC2015
https://unece.org/statistics/documents/2021/12/working-documents/generative-adversarial-networks-synthetic-data
https://unece.org/statistics/documents/2021/12/working-documents/generative-adversarial-networks-synthetic-data

To save a model use the save.model() function, and to read it back again use the load.model() function.
More details on these functions are available in the on-line help.
It is important to note that the models that are saved may contain some information from the original training
data. Therefore, the risk is not that the saved models are prone to an adverserial attack to recover the
training data. The risk is that the models themselves may save (depending on the algorithm) distributional
and descriptive information about the training dataset that would make it easier to reconstruct the training
dataset. That is to say, if the training data contains personal health information, then the models should
also be treated as personal health information. and the procedures for managing the models and access to
them should be consistent with that level of risk.

Some Recommendations

The following are some general modeling recommendations:

• As will be evident if you run the models on the smaller datasets included with the package, things do
not work well with small datasets. Because of the multiple partitions that are needed to deal with data
messiness (e.g., rebalancing, encoding, and calibration), small dataset paritions tend to be quite small
and unstable.

• Models trained on small dataset will likely overfit. This means that they will show performance results
that are quite good, but these results will not be seen when the model is used for predictions on unseen
data. Therefore it is important to be cautious with small datasets in that your evaluation results may
not carry over to actual implementation scenarios.

• If you want to tune a model and evaluate its performance then it is better to use nested CV. This is
more stable (less variation) than vanilla k-fold cross-validation with a hold-out sample. But it will be
more computationally intensive.

• Calibration is done for you automatically so you do not have to worry about that. The predicted prob-
abilities from the models that are trained with this package are already calibrated. That functionality
is relatively stable and is not likely to change.

• A decision to rebalance the dataset is also made automatically, so you do not have to worry about
that. Rebalancing is done using an oversampling technique.

• For the final result / model, always select tuning on. This makes lots of decisions for you and will in
general provide you with better models overall.

• Select the loss that you are most interested in. The choice of “logloss” is a generic one. If discrimi-
nation is the primary objective then optimize on “auc”. If calibration is also an objective (as well as
discrimination) then use “brier”, although the models are calibrated anyway by default and therefore
you have to see if using this loss adds value.

• Keep in mind that this package uses the scaled Brier score rather than the vanilla Brier. And the
scaled brier is truncated at zero so that its range is between zero and one. Negative values will not be
observed. The scaled Brier is interpreted differently with higher values meaning a better calibration.

Class Assignments

Given that this package was originally developed to support teaching epidemiology and medical students
applied machine learning, the following are some ideas about the types of assignments that can be given and
supported by this package:

• Compare the performance of different algorithms on datasets and determine if there is a clear pattern
of superior performance.

11

• Evaluate the performance of ML models as the sample size increases by performing a simulation.

• Given a particular dataset and a model specification, train the best model. The submitted model will
be evaluated on a hold-out dataset and the best performing top 3 models will get additional points.

12

	Main Installation Steps
	Basic Principles of the Package
	Debug Output
	Binary Classification
	Type of Outcome
	Modeling Process
	Type of Prediction
	Prediction Result
	Hyperparameter Tuning
	Example
	Binary Classification Functions
	Nested Cross-Validation
	Calibration

	Saving Models
	Some Recommendations
	Class Assignments

