
Implementing Concepts from the
Personal Software Process

in an Industrial Setting

KHALED EL EMAM

BARRY SHOSTAK

NAZIM H. MADHAVJI

International Software Engineering Research Network Technical Report ISERN-98-05.

Abstract
The Personal Software Process (PSP) has been
taught at a number of universities with impressive
results. It is also of interest to industry as a means
for training their software engineers. While there are
published reports on the teaching of PSP in
classroom settings (at universities and industry),
little systematic study has been conducted on the
implementation of PSP in industry. Also, largely
anecdotal evidence exists as to its effectiveness
with real programming tasks. Effectiveness is
measured in terms of the number of trained
engineers who actually use PSP in their daily work,
and improvements in productivity and defect
removal. In this paper we report on a study of the
implementation of some PSP concepts in a
commercial organization. The empirical enquiry
method that we employed was action research. Our
results identify the problems that were encountered
during the four major activities of an implementation
of PSP: planning, training, evaluation, and
leveraging. We describe how these problems were
addressed, and the general lessons learned from
the implementation. An overall transfer of PSP
training rate of 46.5% was achieved. For the
engineers in our study, those who applied all of the
taught PSP concepts on-the-job improved their
defect detection capabilities.

1 Introduction

1.1 PSP Courses and their Effectiveness

The Personal Software Process (henceforth PSP)
[14] is an evolutionary series of personal software

engineering techniques that an engineer learns and
practices. In its initial incarnation, the PSP has been
intended as a classroom exercise course for
graduate students or senior-level undergraduates.
PSP courses have been introduced in a number of
universities, such as Carnegie Mellon University
[12], Embry-Riddle Aeronautical University [19],
McGil l University [34][35], the University of
Massachusetts and Bradley University [15].
Moreover, it has been stated that both university
students and experienced engineers gain
substantial benefits from working on PSP [13]. PSP
courses have also been used to train professional
engineers in industry [12][13][23][33][26].

Existing measures of the effectiveness of PSP
training are based on what the students do in the
course exercises. Three of the more common
measures of the effectiveness of PSP training are:
(a) the proportion of students who actually complete
the PSP course, (b) the extent of improvements in
programmer productivity, and (c) the extent of
improvements in defect detection and removal skills.

Completion rates obtained in classroom settings
have varied. For example, a university PSP course
had a completion rate of 53% (8 out of 15 students)
[31], a completion rate of 4% (1 student in 24) for a
course taught in industry [31], a completion rate
from an industrial course of 45% (9 students
completing the last exercise as opposed to 20 who
completed the first one) [26], and the course
completion rate of 77% (10 out of 13) [24] for
training at Motorola.

In addition, it has been stated that students who go
through the PSP course have average
improvements in productivity ranging from
approximately 21% [17] to 35% [12], and

Implementing Concepts from the Personal Software Process
in an Industrial Setting

Khaled El Emama

Barry Shostakb

Nazim H. Madhavjic

aFraunhofer Institute for Experimental Software Engineering, Germany
bCAE Electronics Ltd., Canada

cSchool of Computer Science, McGill University, Canada

"improvements of over ten times in the number of
test defects" [12] and reductions of 58% in the
average number of defects injected [17].

1.2 Effectiveness of PSP in Industry

With such impressive results, the PSP is of interest
to industry as a means for training their software
engineers. However, from an industrial perspective,
the effectiveness of PSP should be evaluated based
on what engineers do in their real programming
tasks and in real programming environments, as
opposed to course exercises and classroom
settings. Improvements witnessed with course
exercises in a classroom may not translate into
equivalent benefits with real programming tasks and
environments.

The difference between classroom and real
programming tasks is highlighted by the potential
confounding impact of reuse on the benefits of PSP
in course settings. For example, the manner in
which the PSP exercises are designed allows for
substantial reuse from one exercise to the next.
Sherdil [34] found that the extent of reuse in lines of
code goes up as high as 75% for some exercises
with an average of approximately 40% reuse. Such
high levels of reuse can potentially explain the
improvements commonly witnessed by students in
terms of rising productivity and fall ing defect
densities over time.

Thus far there has been only anecdotal evidence
as to the benefits of PSP with real programming
tasks [16], and only one recent report as to the
number of engineers who actually continue using
PSP concepts after the completion of the course
(see [22]). If engineers do not continue using their
PSP skills after the course then there is little
motivation for management to support PSP courses.

As a preliminary exploration of PSP
implementation in industry, we interviewed four ex-
graduate students from McGill University who had
taken the PSP course and who were currently
programming in industry. We wanted to determine
how PSP has influenced their personal processes.
None of them was using the PSP techniques they
were taught. It is therefore necessary to conduct a
more systematic investigation of PSP in real
programming environments to understand the
barriers to the usage of PSP with actual
programming tasks and to provide guidance for
successful implementation in industry.

1.3 Overview of Paper

In this paper we present a study of the
implementation of PSP concepts in a commercial
organization. The empirical enquiry method that we
employed was action research. Our results identify
the problems that were encountered during the four
major activities of an implementation of PSP:
planning, training, evaluation, and leveraging. We
describe how these problems were addressed, and
the general lessons learned from the
implementation. These results are hoped to be
useful for other organizations embarking on the use
of PSP as a vehicle for improving the processes of
its software engineers. They are also a contribution
to the research literature in terms of presenting an
approach for implementing a process technology,
and in identifying barriers to its implementation and
strategies for overcoming them.

We conducted the study with 28 engineers. Briefly,
our results indicate that 57% (16/28) of the software
engineers who were taught PSP concepts (namely
measurement and structured code reviews1) had the
opportunity to apply the concepts in their real
programming tasks. Also, 46.5% (13/28) of the
engineers continue to apply the concepts in their
programming tasks seven months afterwards. The
engineers who applied code reviews witnessed
substantial improvements in their defect removal
capabilities.

The next section of the paper presents an
overview of PSP so as to familiarize the readers with
its basic concepts, and also introduces the context
and objectives of our study. Section 3 is a
description of our research method. In section 4 we
describe the problems that we encountered in
implementing PSP concepts, how these were
addressed, and an evaluation of the implementation
and its benefits. This is followed by the major
lessons that we have learned during the
implementation activities in Section 5. Finally, in
section 6 we conclude with a summary of the paper
and propose a framework for evaluating PSP
implementations.

1 Of course measurement and code reviews have been used
long before PSP came about, and so have many of the
other PSP concepts. We are concerned here with the PSP
packaging of software engineering concepts and
educational material provided in PSP.

2 Background

2.1 The Personal Software Process

The PSP is intended to improve the personal
practices of software engineers through the
evolutionary introduction of good software
engineering practices. These practices are scaled
down versions of the applicable twelve practices
from the CMM for software [13]. PSP is divided into
seven distinct phases supported by 10 programming
exercises.

In the first phase of PSP the students learn how to
measure their work, as well as how to use the PSP
forms and scripts. A predefined personal process is
assumed that consists of the design, coding,
compiling, and testing steps. These are preceded by
a planning step and succeeded by a post-mortem
step.

Subsequently, the students focus on size
measurement, and size and resource estimation. A
size estimation template is provided, and the
students are taught techniques for size estimation,
and applications in size and resource planning. The
next focus of students is defect management. They
are taught code and design reviews in order to
increase early defect detection, as well as design
specification and analysis techniques and the basics
of process analysis. The final phase is a cyclic
process which would help students scale up the
skills that they have learned to larger programs.

2.2 The Study Context and Objectives

The organization with whom our study was
conducted was CAE Electronics Ltd. located in
Montréal and a leading supplier of flight simulators
(henceforth referred to as CAE). CAE has a
population of approximately 1200 software
engineers. The Human Resources Department in
conjunction with the site SEPG decided on a
measurement-based process improvement strategy.
The implementation of concepts from PSP was
considered as part of this overall strategy.

At the first instance, it was decided that a pilot
study should be conducted to: (a) tailor PSP to the
context of CAE, (b) support a climate for change
within CAE towards a measurement oriented
culture, (c) evaluate the extent to which the PSP
implementation approach has resulted in changes to
the practices of the participating software engineers,
and (d) evaluate the benefits of PSP within CAE
(recall that much of the previously publicized

benefits of PSP were based on the PSP exercises in
classroom settings). Of course, evaluating new
technology through pilot studies is a recommended
practice during the diffusion of innovations into an
organization [21]. In this paper we are concerned
with this pilot study.

Planning for the pilot study started at the end of
1994, and the pilot was completed in February 1996.
We had 28 software engineers taking part in this
study. The details of the research method employed
and of the implementation follow.

3 Research Method

The method that we have used to study the
implementation of PSP is action research (e.g., see
[3][10]). Following the action research method,
researchers are involved directly in the introduction,
observation, and evaluation of planned
organizational change [3][2]. This is usually done as
a collaborative effort with the sponsor of the change
within the organization. Action research strives to
achieve two objectives: (a) to solve practical
organizational change problems, and (b) to increase
our stock of scientific knowledge [32]. A more
complete definition is given in [11] as follows (also, a
characterization of action research in terms of
factors such as internal and external validity is given
by Jenkins [18]):

Action research simultaneously assists in
practical problem-solving and expands
scientific knowledge, as well as enhances the
competencies of the respective actors, being
performed collaboratively in an immediate
situation using data feedback in a cyclical
process aiming at an increased understanding
of a given social situation, primarily applicable
for understanding of change processes in
social systems and undertaken within a
mutually acceptable ethical framework.

While no systematic investigation of the use and
applicabil i ty of action research in software
engineering has been conducted, we can draw
some initial conclusions on its applicability by
looking at the sister field of Management Information
Systems (MIS). Traditionally, empirical MIS research
has utilized four research methods [37]: (a) case
studies, (b) field studies, (c) field tests, and (d)
laboratory experiments. More recently, action
research has been employed by MIS researchers
and is considered a valid method to gain knowledge
of relevant MIS phenomena [5]. Furthermore, if we
consider our study to be on the implementation of

technology in an organization, then action research
is considered an applicable research method [5][6].

4 Results

Similar to [23], we have broken up the PSP
implementation study into four activities: planning,
training, evaluation, and leveraging. These activities
were not sequential. They do provide a useful way
for grouping the issues that arose during the study.
For each of these activities, we present the details of
the implementation activity, the problems that were
faced, and how these problems were addressed.

4.1 Planning

The purpose of the planning phase is to define the
overall approach for the pilot implementation, recruit
participants, and prepare materials (such as data
collection forms and lecture slides).

4.1.1 General Approach for Implementing PSP

In training engineers on PSP, two primary options
were considered: (a) classroom teaching and using
the PSP textbook programming tasks, and (b) a
mixture of classroom teaching and using on-the-job
programming tasks. The former follows closely
Humphrey's original prescription of teaching PSP in
a classroom and giving the participants classroom
exercises to practice the new techniques that they
learn. The latter also uses classroom lectures,
however, the participants apply the techniques they
learn on their real programming tasks. In the current
context, the former approach has a number of
disadvantages as listed below:

� From our previous experiences teaching an
earlier version of PSP at McGill University [34],
delivering the full PSP took approximately 13
weeks of calendar time of 3 hours lecturing time
per week. In addition, the students spent
approximately 4.5 hours of effort per
assignment (al l of the students were
experienced programmers with a median of 6
years of experience; however only 50% had
industrial experience). This amounts to
approximately a 70 hour commitment excluding
time for feedback and for writing the reports.
Humphrey notes that the full course takes
between 150 to 200 hours of effort per engineer
[17]. Such an effort investment was deemed too
large since this time would have to be taken out
of project schedules for multiple people working
on the same project. This would have

discouraged managers from supporting the
training. This is important since supervisor
support is an important determinant of positive
transfer of training skills to the job.

� Four professional software developers who had
previously taken the PSP course at McGill
University were interviewed to determine how
PSP has influenced their personal processes.
None of them were using the PSP concepts in
their real programming tasks. Stated reasons
for not using the PSP concepts in practice
included:

� Organizational programming tasks, as
opposed to the PSP classroom
programming exercises, are usually
conducted in teams. It was not obvious how
the personal tasks of the PSP could be
applied to team-work.

� PSP requires the collection of a substantial
amount of data. Without automated tools to
manage and interpret this data, it could
become cumbersome to apply PSP. The
appropriate tools were not available to
these individuals in their organizations.

� There was a lack of management support.
The overhead of data collection and
interpretation in the short term will have to
come from their own time unless
management sanctions it. They are already
putting overtime, so they do not really have
their own time for PSP anymore.
Management support is necessary for
maintaining skills that are learned during
training [27][8].

� There is a hero culture in the organizations
they work in. Those programmers who have
a disciplined process and who produce
code with less defects are less respected
than the troubleshooting heroes who save
projects in crises due to inadequate
programming practices. This means that the
current reward structure of the organization
is incongruent with the principles of PSP,
which makes it extremely difficult to practice
PSP techniques on the job (e.g., see [28]).
Therefore, there is no motivation for a
disciplined programming process.

� It is difficult to implement the disciplined
practices of PSP alone when the rest of
your team are not doing it. A lack of support

from peers is believed to inhibit practicing
PSP on the job (e.g., see [28][27]).

Therefore, it is evident that there are practical
problems transferring what has been learned in
the university classroom to actual programming
tasks and environments.

� It is believed that, in general, only 20% of
critical job skills are learned from formal training
and education, the remainder are learned on
the job [7]. Therefore, there is a case for
providing the participants with on-the-job
training as part of the PSP implementation.

� We wanted to evaluate the benefits of PSP
concepts in the real working environment of
CAE, and not in an artificial setting. Therefore,
we had to evaluate the benefits of PSP
concepts on actual programming tasks.

� We wanted to gain information for tailoring PSP
to the working patterns of CAE. Therefore, it
was necessary to study PSP with engineers
working on real tasks, not on classroom
exercises.

The choice made was thus to have a mixture of
classroom lectures fol lowed by on the job
programming tasks.

4.1.2 Selection of Participants

Ideally, the participants in the pilot study would be
selected randomly from the population of engineers
at CAE. This would ensure that the sample taking
part in the study is representative of the population
to whom we want to generalize. In field settings this
is frequently difficult to do. Even though a truly
random sample was not possible, we attempted to
recruit participants from a diverse number of
departments and businesses within CAE so as to
ensure a reasonable level of representativeness. In
total, we had participants from seven different
departments.

One other important criterion that was taken into
consideration during participant selection was that

we wanted to select participants from the same
teams to take part in the study. This will ensure that
each participant's immediate colleagues are also
learning and using PSP, and hence providing mutual
support.

4.1.3 Design of the Study

One of the objectives of the pilot study was to
evaluate the benefits of following the techniques of
PSP. Therefore, embedded within the PSP
implementation was a research design to evaluate
the PSP concepts.

For the evaluation we used the general quasi-
experimental design shown in Figure 1. The notation
that we use to describe the design is as follows: an
"O" represents an observation/measurement of a
dependent variable, and an "X" represents an
intervention. Also, the horizontal axis represents the
time dimension. The same design can be extended
to take into account more than two interventions.
This design was used because we expected that the
period between times t0 and t1 would be necessary
for the participants to use and customize their data
collection forms.

At the beginning of the evaluation (time t0) the
participants received intervention X1. This is the
module of PSP that covers basic measurements of
the personal software process. Subsequently, the
participants developed real programs on the job,
and collected the relevant PSP data at the same
time.

After five months, the participants received the
second intervention X2. This is the code review
lecture. The reason we chose code reviews was that
we wanted the second intervention to be "dramatic"
so as to achieve buy-in into PSP by the participants
and management. Humphrey states that code
reviews should bring dramatic positive benefits to
the personal process [14].

One issue that needs to be considered is the
motivation of the participants. All the participants
were volunteers, i.e., none was required to attend
the PSP course or use PSP as part of their job.

X1 O1 O2 O3 O4 ... On X2 On+1 On+2 On+3 ...

t0 t1

Figure 1: Design for evaluating the benefits of PSP.

When the participants were interviewed at the
beginning of the study about their motivation, they
all indicated that they believed that the PSP
techniques would improve their personal processes
(based on what they had heard and read). Of the 28
participants, 24 had a desire to improve their
practices, 3 were interested in quantifying their work,
and one was interested in "helping out with the
study".

In order to control the transfer of skills to the
participants, we had to ensure that they did not have
access to material for the second intervention (or
any other PSP material that may influence their
practices). This was achieved by only giving the
participants the relevant parts of the PSP
manuscript that we wanted them to have. For
example, at time t0 the participants were not given
the PSP material on code reviews.

4.1.4 Definition of Programming Tasks

For our approach to work we had to define a
programming task that is akin to PSP exercises. We
found that a universal definition for all participants
was not possible. We therefore interviewed each
participant at the beginning of the study and asked
them about their current personal processes. During
this interview, and based on their current personal
processes, we defined for each interviewee what is
a programming task. For example, for some
engineers a task would be developing a module that
takes less than two weeks of calendar time (which
may necessitate decomposing larger modules); for
others it was responding to a single change request.

One problem that did occur was "blocking". This
happens when progress on a program stal ls
because a needed resource is missing. This
sometimes caused programs to be swapped in mid-
stream. In some cases, programs were not
completed before the end of the study for that
reason.

Blocking was a key factor resulting in different
engineers completing a different number of
programs during the study. The number of
completed programs per engineer was as low as
one and as high as ten for the duration of the study.

4.1.5 Modification of the Data Collection Forms

Design of the data collection forms is perhaps one of
the most important considerations in a PSP
implementation exercise. While the PSP text does
provide forms, difficulties did occur when attempting
to use these in real programming environments. The
following are some of the considerations that we had

to address:

� There was some mismatch between the
personal process model assumed in PSP and
the processes of the participants. For example,
some participants did mainly maintenance work
and therefore consideration had to be taken of
latent defects that were found; participants may
have an explicit requirements elicitation and
analysis phase; while others performed
extensive prototyping and therefore a
prototyping phase had to be added. Another
example is the participant of Figure 2 who in
some cases did only testing of programs. These
processes did not match exactly the model
assumed in PSP. Therefore, we had to
customize (or assist in customizing) the data
collection forms for each individual participant.

� After designing new forms, it is important to try
them out first with the participants for a period
of time in order to make sure that they are
satisfied with the new forms. For example, in
one case, a participant used the forms happily
until he ran out of copies, after which he
became frustrated because the form was
designed to be on two sides of one sheet and
he did not have a two sided photocopy machine
in the neighborhood. We therefore had to
redesign it to fit on one side only. As another
example, one participant confused the
seemingly harmless term "Actual" on the
Project Plan with the similar word in French
"Actuelle" meaning current. He had understood
that he had to keep a separate project plan for
each day rather than just one for the whole
program. It is through trialing of the forms and
constant followup that unanticipated difficulties
like this are identified and addressed.

� Some participants found it bothersome to fill up
the defect recording form for every syntax error
(e.g., missed semi-colon or misspelled variable
names). We then developed a checklist of
common syntax errors that the participants can
just tick whenever a syntax error occurs. This
substantially reduced the effort to record syntax
errors. An example of a form that is used to
record the removal of syntax errors injected
during coding is given in the appendix. For this
form, the engineers put in the cells the phase
where the defect was removed. It is assumed
that each syntax error takes one minute to fix. If
it does take longer, then the engineer could fill
up a normal defect recording form.

The above charts provide a signature of this participant's process before the introduction of code reviews.
These would serve as a baseline for comparing the effects of future process changes. This participant
exhibits most effort variation in her compilation and testing phases compared to coding (as a percentage
of total effort). She also consistently spends no time planning. It is interesting to note that for some
programs, there is zero coding effort. This is because this participant sometimes only tests code provided
by other engineers. Furthermore, it is interesting to note that some programs are not tested by the
participant herself. This explains the large variation in testing effort percentage. It is seen that she injects
all of the defects during design and coding, and removes all of them during compiling and testing. The
majority of her error types are syntax. However, it is the environment errors that take the most time to fix.
It would improve overall life cycle time if she injected less environment type errors.

Min-Max

25%-75%

Median value

% of Time in Activities
P

er
ce

nt
ag

e
of

 T
im

e

-10

10

30

50

70

90

PLAN DESIGN CODE COMPILE TEST POST

Min-Max

25%-75%

Median value

% of Defects Injected

P
er

ce
nt

ag
e

of
 D

ef
ec

ts

-20

0

20

40

60

80

100

120

PLAN DESIGN CODE COMPILE TEST

Min-Max

25%-75%

Median value

% of Defects Removed

P
er

ce
nt

ag
e

of
 D

ef
ec

ts

-20

0

20

40

60

80

100

120

PLAN DESIGN CODE COMPILE TEST

Distribution of Defects

TYPE OF DEFECT

Assignment, 17.6 %

Environment, 29.4 %

Function, 11.8 %

Syntax, 41.2 %

Min-Max

25%-75%

Median value

Time to Fix Defects

TYPE OF DEFECT

M
in

ut
es

-20

20

60

100

140

180

220

260

300

Assignment Syntax Function Environment

Figure 2: Process signature for one of the participants.

4.2 Training

The training activity started from the first PSP
lecture until the end of the study. A number of issues
need to be addressed in order to ensure that the
participants continue using the PSP concepts in
their programming tasks:

� There is a need for constant feedback in order
to reinforce what the participants have learned.
We did this by having regular meetings with the
participants on an individual basis to help
interpret the data that they have collected, to
track their progress and to answer questions.
An example of data that is interpreted in one of
these sessions is given in Figure 2. In this
example, we wanted to establish a baseline
process signature for one of the participants.

� Many participants felt that automated data
collection and analysis tools would be useful for
them. However, it is difficult to automate data
collection in a heterogeneous computing
environment. When we attempted automation,
we realized that the number of different
platforms that were present would be a
substantial constraint. Some of the participants
implemented tools on their own or used tools
that were available in other departments. In the
case of line of code measurement, this had to
be centralized to ensure that one LOC counter
was used (to maintain consistency of
measurement).

� The implementation of PSP is difficult unless
the managers of the participants are involved in
supporting the PSP skills that the participants

Interruption*X

Timesheet: everyone fills one once a week*TS

Training: formal lectures, seminars, or reading to learn new skills*TR

Support: when you give advice or help to others related to something you know or have done; for example, users of
a library that you have written

*S

Correspondence: email, memos, etc.*MM

Meeting*ME

Maintenance: of system configuration, computer environment (not of system code)*M

Configuration Management: builds, library management, file check-in/check-out*CF

Clean Up: desk, papers, computer files and directories*CL

Break: mid-shift and lunch; these are interruptions that you decide to make rather than being imposed upon you*B

IntegrateIN

Unit TestTE

CompileCM

Code ReviewCR

CodeCO

Design ReviewDR

Design: includes bringing documentation up-to-dateD

Analyze: perform an analysis of the programming problemA

Figure 3: Types of activities used during the detailed time logging. Codes preceded by an asterisk (*) indicate
what we have designated as non-programming tasks.

0.880.250.581.073

1.440.430.611.062

1.550.621.110.651

Unit TestCompileCodeDesignParticipant

Figure 4: Average uninterrupted hours for four programming tasks.

have learned in the classroom. Although we did
obtain the support of the managers at the start
of the study, we did not really involve them in
the day-to-day conduct of it. One participant
commented that it would be nice if her group
leader had come by and asked "how's PSP
going?" once in a while.

� Some participants felt that they spend very little
time actually doing programming tasks and that
interrupts take up much of their time. We
therefore requested that they maintain detailed
time logs at a 15 minute granularity to
determine where their time is spent2. For three
of the participants who maintained their time
logs, we found that approximately 25% of their
time is spent on non-programming tasks3. The
list of task categories that were used is given in
Figure 3. After presenting them with these
numbers, the participants were more convinced
that they in fact do spend most of their time on
programming tasks. However, we also found
that the amount of contiguous time that these
participants spend without being interrupted is
very small indeed. The values for the three
participants for the design, code, compile, and
unit test tasks are shown in Figure 4.

4.3 Evaluation

Two evaluations were conducted. The first was of
the transfer of training to actual programming tasks.
The second was of the benefits of the training.

4.3.1 Evaluating the Transfer of Training

Transfer of training is defined as "the effective, and
continued application to trainees' jobs of the
knowledge and skills gained in training" [7]. In
general, it is believed that as little as 10% of
expenditures by US industry in training actually
result in transfer to the job [1]. This makes the
transfer of training an important measure of the
effectiveness of PSP training.

We measured the transfer of training by the
percentage of participants who were still collecting
data on their personal processes. The transfer of
training rate for our study was 46.5%. This value
was calculated seven months after the
commencement of the first PSP lecture. From the
perspective of CAE this was considered a success.

This value is comparable to the only study that
evaluated the transfer of training, calculated as
changes in engineers' habits after the completion of
the course [22]. They obtained a value of
approximately 45% for personal code reviews and
approximately 65% for defect management
practices, calculated 5 months later. It is then
reasonable to conclude that our rate, derived from
an exercise using actual programming tasks and
after 7 months, is good. Below we explain how this
value was obtained and also the investigations we
conducted in order to understand the reasons for the
non-transfer of learning that did occur (which was
53.5%).

At the outset, 28 participants were registered to
take part in the study. After we started, 5
participants were reassigned to nonprogramming
tasks (e.g., updating documentation), 3 were
reassigned to field duty, 1 went on maternity leave,
and 3 left the company. These twelve participants
did not have the opportunity to apply the PSP
concepts that were taught. Therefore, 57% (16/28)
of the original participants had the opportunity to
apply the concepts in their real programming tasks.
In terms of the background variables (years of
experience and years with the company) there was
no statistically significant difference between those
who remained and those who left (using a Mann-
Whitney U test at the 0.1 alpha level).

After seven months, thirteen participants remained
and three had dropped out. This gives an overall

2 Perry et al. [30] report on a study to calibrate self-reported
time by software engineers. They found that on average
software engineers over-represent the total amount of time
that they work by 2.8%. This was calculated by comparing
self-reports with reports from direct observation of the
programmers at work. Also, they calculated the proportion of
time that the self-reports and the observation reports agreed
on what the software engineer was actually doing. This was
found to vary from 0.95 to 0.58. This gives an indication,
based on previous studies, of how accurate the self-reported
times in our study are expected to be. It is also interesting to
compare these numbers with those obtained by Perry et al.
[29]. In that study they found that almost half of the time
spent by programmers was on non-coding tasks. For the
three participants for whom we have collected data, the first
spent approximately 69% of his time on tasks other than
code and compile, the second spent approximately 82% of
his time on tasks other than code and compile, and the third
spent approximately 98% of his time on tasks other than
code and compile. For these participants, they spend much
of their programming time on other tasks. This was mainly
unit testing for the former two. The latter participant spent
most of the time on design.

3 One participant collected detailed time logs for 47 days,
equivalent to approximately 471 hours. The second
participant collected detailed time logs for 15 days,
equivalent to approximately 107 hours. The third participant
collected them for 15 days, equivalent to approximately 118
hours.

transfer of training rate of 46.5% (13/28). One of the
factors that has an impact on the transfer of training
is the opportunity to use the learned skills on the
job [1]. In this study, it is clear that opportunity to
apply the PSP concepts had a large impact on the
overall transfer of training. For those who had the
opportunity, 81% (13/16) were applying PSP
concepts in their real programming tasks seven
months afterwards.

At the outset we expected that peer support would
be an important determinant of whether participants
continued using PSP. We tested this hypothesis for
the sixteen participants who had the opportunity to
apply the PSP concepts. A point biseral correlation
was calculated [4]. This provides a measure of
association between a dichotomous and a
continuous variable. The dichotomous variable that
we used was whether participants were still using
the concepts that they were taught after seven
months. The continuous variable was the number of
people in the same department who were using the
concepts that they were taught after seven months.
If the association was positive and significant then
we can conclude that having other people in the
same department using the PSP concepts
contributes towards a participant using the PSP
concepts. The point biseral correlation was −0.3 and
not significant, but it was in the expected direction
(i.e., the more people in the department the less
likely that they would leave). However, it can be
argued that the number of people using PSP
concepts is a function of the size of the department
and therefore another approach should be used. So
we dichotomized the continuous variable into one
group of participants where no one in their
department was using PSP concepts, and another
group where at least one other person was using
PSP concepts. We used the Fisher exact test [36] to
determine if there was any relationship with use of
PSP concepts. For a one tailed test, the result was
not significant at an alpha level of 0.1. These results
do not support the contention that having other
people in the same department using the same
personal process concepts contributes towards the
transfer of training.

4.3.2 Evaluating the Benefits of PSP Concepts

We evaluated the trends in productivity (measured
in LOC of new code per hour) and obtained different
results for different engineers. The Daniels test [9]
was used to look for monotonic trends4. None of the

trends were statistically significant, although some
were posit ive (averaging 0.18) indicating an
increasing level of productivity over time and others
were negative (averaging −0.41) indicating a
decreasing level of productivity over time. This
general lack of trend, however, is consistent with
previous results in [19] where they did not find
changes in levels of productivity during all of the
PSP exercises.

One measure of the benefits of using PSP
concepts that has been used in the past is defect
density [19][12]. Using this measure, it is assumed
that if defect density goes down, then code quality is
improving. We felt that in this context such a
measure would not be appropriate because it is
difficult to interpret changes in the value of defect
density when we only have data from unit testing. If
the defect density decreases that could mean that
defect detection has deteriorated or that less defects
have been injected (e.g., because the problem
complexity was very low). Conversely, if defect
density increases, this could mean that defect
detection has improved or that more defects are
being injected.

Marked increases in defect density were witnessed
in cases where participants took the code review
lecture. Right after the code review lecture, the
defect density of participants' programs rose
sharply. The average increase in defect density was
from approximately 88 defects/KLOC to 265
defects/KLOC after the code review lecture. We
found no consistent evidence of large problem
complexity, cyclomatic complexity or program size
differences between pre and post code review
programs. Using interpretations and assumptions
from previous studies, this would imply that code
quality has actually deteriorated. However, we
conjecture that the defect detection capabilities of
the engineers have improved after the code review
lecture. This result is similar to the slight increase in
defect density over time for an industrial PSP course
evident in the charts from [31].

Another dependent measure that has been used in
previous work on PSP has been the yield [19], which
is the percent of defects removed before
compilation. The average yield for programs
developed without the use of code reviews was
1.65%. However, this includes many programs that
were developed with a yield of 0%. If we only use
programs developed with a yield greater than 0%,
then the average yield without code reviews was
approximately 12%. The average yield when code
reviews were used was 27.7%. Therefore, the yield

4 We only considered participants that have developed four or
more programs during that period.

more than doubles with code reviews. This is not
surprising given the way yield is calculated however.

In [23], the authors use the percentage of time
spent on test as a measure of the improvements
due to PSP. The reasoning is that it indicates an
improvement in early defect removal skills. From our
data, the average reduction in percentage of time
spent on testing was from approximately 37% before
code reviews to approximately 17% afterwards. This
can be seen as a considerable improvement in early
defect removal capabilities.

We also conducted a post-hoc test to investigate the
issue of when engineers should review code. In [16],
Humphrey notes that engineers question the need to
review code before compil ing. We can present
confirmatory evidence to that given by Humphrey on
the relationship between compile defects and test
defects. We found a correlation of 0.69 which is
significant at the 0.001 alpha level for a one tailed test
(after removal of extreme outliers). While this does not
imply a causal relationship, it seems that the more
defects found in compile the more defects are found in
test. This strengthens the argument for reviewing code
before compiling it.

4.4 Leveraging

Given that one of the objectives of the PSP pilot
study was to create a cl imate for diffusing
measurement concepts to the remainder of the
organization, the PSP study, its importance, and its
outcomes have to be promoted across the site. One
way we did this was through the company
newsletter. This also helps give the participants in
the study visibility, which is useful in maintaining
their enthusiasm.

Further, presentations of the results of the pilot
were given to senior management. These
presentations generated sufficient enthusiasm that
followup studies are planned.

5 Lessons Learned

Some of the main lessons that we have learned in
this study are summarized below:

� The need for customization of personal
processes was recognized in [15]. It is also
important to customize the PSP data collection
forms to the personal processes of individual
participants, and also to the work environment.
This point was also noted in [31]. A structured
process for eliciting process information has

been presented in [25], which can be used to
elicit personal processes.

� All forms must be piloted with the participants in
their real work environment. Even if the forms
were designed to fit their personal processes,
actual use in realistic programming tasks may
reveal deficiencies in the design of the forms.

� It is important to have automated tools that
support the participants' data collection and also
data analysis. The paper intensive nature of
PSP was also identified as a problem for
professional engineers in [31]. Furthermore, it
would be preferable if the data collection forms
are available in editable format for the
participants so that they can customize the
forms themselves as they gain a better
understanding of their processes (e.g., to
remove or add activities).

� It would be most preferable to give the
supervisors or managers of the participants at
least a formal short overview of PSP so that
they understand it and see its benefits. This
would help gain stronger commitment from
management for PSP. This is similar to the top-
down approach to introducing PSP in
organizations suggested in [17], and practiced
in one organization [26].

� Lectures should cover all of the typical life
cycles that are in effect in the organization, not
only the one presented in the PSP manuscript.
This makes the classroom teaching more
relevant to the participants' real programming
tasks.

� Feedback sessions to the participants are
important in order to reenforce the concepts
that they have learned. Also, they have to see
the data that they collect being used, otherwise
they may lose interest.

We have identified above a number of lessons that
we believe are important in a PSP implementation.
Furthermore, we have, where possible, corroborated
these lessons with findings from other recent reports
on teaching PSP.

6 Conclusions

Professionals and students taking courses on the
Personal Software Process have demonstrated
impressive improvements in their personal
capabilities. There has been little systematic study,
however, of the implementation of Personal

Software Process concepts in real programming
environments. In this paper we presented the details
of a pilot implementation of some of these concepts
(in our study these were measurement and
structured code reviews) in a commercial
organization. We found that seven months after
starting 46.5% of the participants were still using
PSP concepts in their real programming tasks.
Furthermore, those who used code reviews
demonstrated substantial improvements in their
defect removal skills.

The objectives of the pilot study were also met: (a)
the chosen PSP concepts were tailored to the
organization, (b) there has been an increased
awareness of measurement within the organization,
(c) we evaluated how many participants continue
applying the PSP concepts in their work using our
implementation approach, and (d) we evaluated the
benefits of the implemented PSP concepts.

We have also identified a number of factors that
should be considered in order to ensure a
successful implementation in an industrial setting. Of

these, perhaps the most important are: customizing
the course materials to the organization and the
personal practices of the engineers, providing
automated tools for use by the engineers, and
obtaining management commitment and support for
implementation.

While our results are specific to one organization,
they do provide some initial guidelines for others
embarking on an implementation of the Personal
Software Process in industry. Furthermore, it would
be informative to see if future implementation
studies obtain similar results of Personal Software
Process effectiveness to the ones obtained here.

To promote more systematic study of the
implementation of PSP in industrial settings and to
facil i tate their comparison, we have adapted
Kirkpatrick's framework for evaluating training
programs [20]. His framework goes from the very
simple evaluation (level 1) to the most informative and
sophisticated (level 4). This framework is summarized
in Figure 5. In the current paper, we have reported

Level 1 - Evaluating Reaction
At this level of evaluation, one measures the reaction of participants to the PSP training that they have
received. It is essentially a measure of customer satisfaction. Usually, one would administer a
questionnaire at the end of the training course.

Level 2 - Evaluating Learning
At this level, one measures the extent to which participants change their attitudes, improve knowledge,
and/or increase their skill levels as a consequence of taking the PSP training (assuming that they have
a positive reaction - otherwise there is little chance of learning). This type of evaluation would usually be
done during the training phase. An easily implemented approach for doing this kind of evaluation is to
compare participant performance at the end of the course with performance at the beginning of the
course.

Level 3 - Evaluating Behavior
At this level, one evaluates the extent to which change in behavior has occurred due to taking the PSP
course. It is assumed that students have learned, otherwise they are not likely to change their behavior.
The evaluation of behavior can be achieved by calculating the proportion of participants who had the
opportunity to apply the PSP concepts and how many actually apply them in their real programming
tasks. This type of evaluation is done during the evaluation phase of the implementation.

Level 4 - Evaluating Results
At the fourth and final level, one would evaluate the benefits gained by the participants in their real
programming tasks (assuming that they have changed their behavior). In the case of PSP, results can
be evaluated at at least two units of analysis: the personal and project units. For instance, for a
personal unit of analysis, one can evaluate whether each participants' defect removal skills have
improved compared to before applying PSP concepts. For a project unit of analysis, one can evaluate
whether field defects for a product were reduced after the team applied the PSP concepts in the project.

Figure 5: A four-level framework for evaluating PSP implementation in industrial settings.

evaluations at level 3 and level 4 (at the personal unit
of analysis).

Acknowledgements

The authors wish to thank John Daly, Jerome
Pesant, and Pascale Tardif for their constructive
comments on an earlier version of this paper.

References

[1] T. Baldwin and J. Ford: "Transfer of Training: A
Review and Directions for Future Research". In
Personnel Psychology, 41:63-105, 1988.

[2] A. Cherns: "Social Research and its Diffusion". In
Human Relations, 22(3):209-218, 1969.

[3] P. Clark: Action Research and Organizational
Change, Harper & Row, 1972.

[4] G. Ferguson and Y. Takane: Statistical Analysis in
Psychology and Education, McGraw-Hill, 1989.

[5] R. Gall iers: "In Search of a Paradigm for
Information Systems Research". In Research
Methods in Information Systems, E. Mumford et al.
(eds.), Elsevier Science Publishers, 1985.

[6] R. Galliers and F. Land: "Choosing Appropriate
Information Systems Research Methodologies". In
Communications of the ACM, 30(11):900-902,
November 1987.

[7] P. Garavaglia: "How to Ensure Transfer of
Training". In Training and Development, pages 63-
68, October 1993.

[8] D. Georgenson: "The Problem of Transfer Calls for
Partnership". In Training and Development
Journal, pages 75-78, October 1982.

[9] J. Gibbons: Nonparametric Statistics , Sage
Publications, 1993.

[10] B. Hall: "Participatory Research: An Approach for
Change". In Convergence: An International Journal
for Adult Education, 8(2):24-31, 1975.

[11] M. Hult and S. Lennung: "Towards a Definition of
Action Research: A Note and Bibliography". In The
Journal of Management Studies, 17:241-250,
1980.

[12] W. Humphrey: "The Personal Process in Software
Engineering". In Proceedings of the 3rd
International Conference on the Software Process,
pages 69-77, 1994.

[13] W. Humphrey: "The Personal Software Process".
In Software Process Newsletter, IEEE TCSE, No.
1, pages 1-3, September 1994.

[14] W. Humphrey: A Discipl ine for Software
Engineering, Addison Wesley, 1995.

[15] W. Humphrey: "Introducing the Personal Software
Process". In Annals of Software Engineering ,
1:311-325, 1995.

[16] W. Humphrey: "The Power of Personal Data". In
Software Process Improvement and Practice
Journal, 1:69-81, 1995.

[17] W. Humphrey: "Using a Defined and Measured
Personal Software Process". In IEEE Software,
pages 77-88, May 1996.

[18] A. Jenkins: "Research Methodologies and MIS
Research". In Research Methods in Information
Systems, E. Mumford et al. (eds.), Elsevier
Science Publishers, 1985.

[19] S. Khajenoori and I. Hirmanpour: "An Experiential
Report on the Implications of Personal Software
Process for Software Quality Improvement". In
Proceedings of the Fifth International Conference
on Software Quality, pages 303-312, October
1995.

[20] D. Kirkpatrick: Evaluating Training Programs: The
Four Levels. Published by Berrett-Koehler, 1994.

[21] D. Leonard-Barton and W. Kraus: "Implementing
New Technology". In Harvard Business Review,
pages 102-110, November/December 1985.

[22] S. Macke: "Personal Software Process at Motorola
PPG". In Proceedings of the Software Engineering
Process Group Conference, 1996.

[23] S. Macke, S. Khajenoori, J. New, I. Hirmanpour, J.
Coxon, A. Ceberio, and B. Manente: "An
Industry/Academic Partnership that Worked: An In
Progress Report". In Proceedings of the 9th
Conference on Software Engineering Education,
April 1996.

[24] S. Macke, S. Khajenoori, J. New, I. Hirmanpour, J.
Coxon, and R. Rockwell: "Personal Software
Process at Motorola Paging Products Group". In
Proceedings of the Software Engineering Process
Group Conference, 1996.

[25] N. Madhavji, D. Hoelt je, W-K Hong, and T.
Bruckhaus: "Elicit: A Method for Eliciting Process
Models". In Proceedings of the 3rd International
Conference on the Software Process, pages 111-
122, 1994.

[26] A. Matvya: "Industrial Strength PSP at Union
Switch & Signal". In Proceedings of the Software
Engineering Process Group Conference, 1996.

[27] D. Michalak: "The Neglected Half of Training". In
Training and Development Journal, pages 22-28,
May 1981.

[28] J. Mosel: "Why Training Programs Fail to Carry
Over". In Personnel, 34(3):56-64, November-
December 1957.

[29] D. Perry, N. Staudenmayer, and L. Votta: "People,
Organizations, and Process Improvement". In
IEEE Software, pages 36-45, July 1994.

[30] D. Perry, N. Staudenmayer, and L. Votta:
"Understanding and Improving Time Usage in
Software Development". In Software Process, A.
Fuggetta and A. Wolf (eds.), Wiley, 1996.

[31] M. Ramsey: "Experiences Teaching the Personal
Software Process in Academia and Industry". In
Proceedings of the Software Engineering Process
Group Conference, 1996.

[32] R. Rapoport: "Three Dilemmas in Action
Research". In Human Relations, 23(6):499-513,
1970.

[33] D. Roy: "The Personal Software Process: An 'Ego-
Centered' Improvement Paradigm". In Proceedings

of the Software Engineering Process Group
Conference, 1996.

[34] K. Sherdil: "Personal 'Progress Functions' in the
Software Process". Master's Thesis, School of
Computer Science, McGill University, 1994.

[35] K. Sherdil and N. H. Madhavji: "Human-Oriented
Improvement in the Software Process". In
Proceedings of the 5th European Workshop on
Software Process Technology, Springer Verlag,
1996.

[36] S. Siegel and J. Castellan: Nonparametric
Statistics for the Behavioral Sciences, McGraw
Hill, 1988.

[37] R. Van Horn: "Empirical Studies on Management
Information Systems". In Data Base, 5:172-180,
1973.

Appendix: Example Defect Recording Form for Syntax Errors

DEFECT RECORDING FORM

Name: _________________ Module ID: ________________ Sheet ___ of ____

COMMON ERRORS

missing { or }

missing (or)

missing " or '

missing ;

missing /* or */

missing include

undeclared variable

misspelled variable

incorrect = or ==

REMOVAL PHASE:
P : Planning D : Design
DR: Design review CO: Code
CR: Code review CM: Compile
T : Test

